Abstract

AbstractThe water vapor in the ambient air affects the accuracy of the photoacoustic (PA) dissolved gas analysis system for transformer health monitoring. A laser PA system was evaluated by dry and humidified standard gases to study the influence of water vapor concentration on PA gas detection. Theoretical analysis was conducted on the effect of gas molecule relaxation on PA signal detection. A high‐frequency resonant PA cell and a low‐frequency nonresonant PA cell were used to detect acetylene (C2H2) and carbon monoxide (CO), respectively. The experimental results show that the PA signal of humidified CO is about 12 times higher than PA signal of dry gas for the resonant PA detection system, respectively. In addition, as the frequency is increased from 30 to 980 Hz, the PA signals of humidified and dry CO attenuate by 1.5 and 6.9 times, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.