Ensuring the mechanical performance of backfill materials while reducing cementation costs is a key challenge in mine backfill research. To address this, fiber materials such as polypropylene (PP) fiber and rice straw (RS) fiber have been incorporated into cement-based mixtures for mine backfilling. This study investigates the effects of PP and RS fibers on the mechanical properties, flow characteristics, and microstructure of Tailings and Wasted Stone Mixed Backfill (TWSMB). A series of orthogonal experiments were designed to evaluate the influence of variables, including the cement-sand ratio, solid mass concentration, wasted stone mass concentration, fiber content, and fiber length on the TWSMB properties. The results indicate that the influence of cement-sand ratio and solid mass concentration have a more significant impact on strength than fibers, though the fibers show a stronger effect than the wasted stone mass concentration. Both fiber types enhanced the strength of the specimens, with PP fiber exhibiting a stronger reinforcing effect than RS fiber. Furthermore, the effect of PP fiber content was more pronounced than that of fiber length, whereas the opposite trend was observed for RS fiber. The optimum fiber parameter levels were determined for each type: PP fiber performed best at a mass concentration of 1.5% and a length of 6 mm, while RS fiber showed optimal performance at a mass concentration of 1.0% and a length of 5-10 mm. Macroscopic damage analysis indicated that the structural integrity and residual compressive strength of the TWSMB specimens were preserved even after surpassing the ultimate compressive strength, due to the crack-bridging effect of the fibers. Microstructural analysis showed that PP fiber-reinforced specimens exhibited a dense structure formed through reactions with other hydration products. In contrast, the surface of RS fibers was nearly fully encapsulated by hydration products, resulting in the formation of a physical skeleton structure. This study provides new insights into minimizing cement consumption and reducing backfilling costs in mining operations.
Read full abstract