Purpose. To determine the thickness of thin films of coal matter in the Sherubaynurinsky area of the Karaganda basin and their effect on the physical properties of these films. Methodology. In order to calculate the thickness of the surface layer of the coal substance using our proposed formula, one needs to know the molar mass and density. We will use the well-known work where it is shown that such a characteristic as the molecular weight of coal reflects rather well the degree of metamorphism, and is also decisive for the study on the composition and structure of coal raw materials. Findings. The role of the thickness of the surface layer of coal in the course of most physical processes is shown. A thin layer of coal matter differs significantly from metals and other compounds. But it is close to the structure of higher fullerenes. One fundamental parameter, the atomic volume of the surface layer, determines all the properties of the nanostructure of this layer. Originality. For the first time, the thickness of the surface layer of the coal substance has been determined, which is two orders of magnitude greater than the thickness of pure metals. The thickness of the surface layer of higher fullerenes C96 (135 nm) is close to that for OC coal (146 nm). The average statistical structural unit of coal corresponds to higher fullerenes with the number of carbon atoms in the cluster >100, which is a unique feature of coal matter. The thickness of the surface layer of coal in the Sherubaynurinsky area of the Karaganda basin with a size of ~150200 nm was obtained. This structure is a nanostructure. In this layer, the physicochemical properties of nanomaterials occur: a change in the crystalline (supramolecular) structure of coal; a change in its electronic structure and its electrical conductivity; change in the conditions of the stress state of coal; change in the conditions of methane diffusion in coal seams and many other phenomena. Practical value. The natural gas content C0 depends linearly on the reciprocal of d(I). For coal seam k, where d(I) = 180.8 nm, it was obtained 0 = 19 m3/t. After the release of coal and gas, the average value of C0 = 216 m3/t at a seam depth of 430 m, and in the Sherubaynurinsky area C0 = 14 m3/t at an average thickness of the surface layer d(I) = 170 nm. Hence, after the explosion d(I)v = 35 nm, i.e. the layer thickness decreases by almost 5 times, leading to the formation of coal dust. We have considered only a part of the nanostructure issues: porosity and gas content, explosiveness and moisture content of coal seams, and have shown that all physical phenomena in a thin layer of coal have a dimensional dependence and determine structures unexplored until now, and phenomena studies on which are necessary for the practice of mining.
Read full abstract