Simple SummaryThe very common parasite infections in animals are caused by members of Apicomplexa, including Toxoplasma gondii, Neospora sp., and Sarcocystis sp. These parasites pose serious veterinary problems. For example, the development of unambiguous diagnostic algorithms and determining the correct diagnosis are hindered by the similar antigenic structure of these parasites, as well as the multitude of similar disease symptoms presented in an infected animal. The intracellular parasite, T. gondii, infects a wide range of warm-blooded animals, including humans. This parasite is widespread among different animal populations, contributes to the loss of reproductive and malformations in young individuals, and can become a serious economic concern for farmers. Additionally, the consumption of undercooked or raw meat and the consumption of improperly processed milk product derived from farm animals are the main parasite transmission routes in humans. This work reviews potential improvements to diagnostic techniques that use recombinant antigens for serodiagnosis of toxoplasmosis in various species of animals.Toxoplasmosis is caused by an intracellular protozoan, Toxoplasma gondii, and is a parasitic disease that occurs in all warm-blooded animals, including humans. Toxoplasmosis is one of the most common parasitic diseases of animals and results in reproductive losses. Toxoplasmosis in humans is usually caused by eating raw or undercooked meat or consuming dairy products containing the parasite. Diagnosis of toxoplasmosis is currently based on serological assays using native antigens to detect specific anti-T. gondii antibodies. Due to the high price, the available commercial agglutination assays are not suited to test a large number of animal serum samples. The recent development of proteomics elucidated the antigenic structure of T. gondii and enabled the development of various recombinant antigens that can be used in new, cheaper, and more effective diagnostic tools. Continuous development of scientific disciplines, such as molecular biology and genetic engineering, allows for the production of new recombinant antigens and provides the basis for new diagnostic tests for the detection of anti-T. gondii antibodies in animal serum samples.