Effective combination therapy usually reduces the plasma viral load of HIV to below the detection limit, but it cannot eradicate the virus. The latently infected cell activation is considered to be the main obstacle to completely eradicating HIV infection. In this paper, we consider an HIV infection model with latently infected cell activation, virus diffusion and spatial heterogeneity under Neumann boundary condition. The basic reproduction ratio is characterized by the principal eigenvalue of the related elliptic eigenvalue problem. Besides, by constructing Lyapunov functionals and using Green’s first identity, the global threshold dynamics of the system are completely established. Numerical simulations are carried out to illustrate the theoretical results, in particular, the influence of virus diffusion rate on the basic reproduction ratio is addressed.