Abstract

Using the interval type-2 Takagi–Sugeno (IT-2 T-S) fuzzy control method, this paper formulates a class of non-autonomous interconnected dynamical system (IDS) with discontinuities. Under the differential inclusion (DI) framework, the fixed-time stabilization (FXTS) problem is studied via indefinite derivative Lyapunov approach, where the time-derivative of constructed Lyapunov function doesn’t have to be negative/semi-negative. By designing novel IT-2 T-S fuzzy switching control protocol possessing time-varying control gain coefficients, several sufficient stabilization conditions are obtained to determine the system’s stability in fixed time. Furthermore, the settling time (ST) of FXTS is estimated. Due to the time-varying property of control gain coefficients and indefiniteness of system’s parameters, the advantage of the IT-2 T-S fuzzy switching control protocol designed in this paper is that its control gain coefficients are not only more flexible, but also can affect the estimation of ST. Finally, the designed control protocols and FXTS results are confirmed by numerical example.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.