In the field of aerospace, the application of carbon fiber composite parts is increasing year by year. As an important factor in the manufacturing of composite parts, tools play a crucial role in the manufacturing accuracy of composite parts, and composite tools have higher accuracy to better meet the manufacturing requirements. In this study, the properties of the novel thermoplastic composite mandrel of the new polymethyl methacrylate matrix are further investigated and a model is proposed to simulate the curing and spring back process of the composite part with the proposed composite mandrel. In detail, the glass transition temperature test and dynamic frequency test were carried out for the thermoplastic composite mandrel. The material constitutive equation of the thermoplastic composite mandrel was constructed based on the experimental data, and the accuracy of the constitutive equation of thermoplastic matrix material was verified by tensile experiments of matrix materials under constant strain conditions. Finally, the simulation result is compared with the fabricated part, and the effectiveness of the proposed method has been verified. This proved that the developed constitutive model of thermoplastic composite mandrel can effectively predict the curing deformation of composite parts with complex structures.
Read full abstract