Traditionally, animal studies employing electrical stimulation for conditioning denervated muscle rely on 24-hour-based stimulation paradigms, most employing implantable stimulators. While these stimulators provide the necessary current to cause muscular contraction, they have problems with battery life, programmability, and long-term robustness. Continuous 24-hour stimulation, while shown to be effective in animals, is not easily translatable to a clinical setting. It is also difficult to evaluate animal comfort and muscular contraction throughout a 24-hour period. We have developed a system and stimulation paradigm that can stimulate up to five animals at one time for one hour per day. The constant current stimulator is a USB-powered device that can, under computer control, output trains of pulses with selectable shapes, widths, durations and repetition rates. It is an external device with no implantable parts in the animal except for the stimulating electrodes. We tested the system on two groups of rats with denervated gastrocnemius muscles. One group was stimulated using a one-hour-per-day, 5-days-per-week stimulation paradigm for one month, while the other group had electrodes implanted but received no stimulation. Muscle weight and twitch force were significantly larger in the stimulated group than the non-stimulated group. Presently, we are using the stimulator to investigate electrical stimulation coupled with other therapeutic interventions that can minimize functional deficits after peripheral nerve injuries.