The primary bottleneck in heavy oil production lies in the significant energy consumption and CO2 emissions associated with steam injection for recovery. To address this challenge, we propose the ISSG-SAGD (in-situ solvent generation enhanced steam assisted gravity drainage) technique. The recovery mechanisms and operational strategies are investigated using a numerical simulation with an Athabasca bitumen reservoir model, affirming the considerable environmental and economic potential of ISSG-SAGD. The results demonstrate that ISSG-SAGD integrates the recovery mechanisms of both SAGP (steam and gas push) and ES-SAGD (expanding solvent SAGD). Moreover, employing cyclic steam injection, maintaining low operating pressure, and initiating ISSG-SAGD at an early stage enable a 33.79 % reduction in steam consumption, a 39 % decrease in average carbon intensity, a 5.40 % increase in oil production, and a 61.28 % rise in net present value compared to conventional SAGD. This study proves that the ISSG-SAGD approach offers a sustainable and efficient alternative for future heavy oil recovery endeavors, addresses the challenges of high energy consumption and carbon emissions, and paves the way towards a green and economically viable future for the heavy oil development.
Read full abstract