Climate change is widely recognized as one of the most significant challenges facing our planet and human civilization. Human activities such as the burning of fossil fuels, deforestation, and industrial processes release greenhouse gases into the atmosphere, leading to a warming of the Earth’s climate. The relationship between climate change and cardiovascular (CV) health, mediated by air pollution and increased ambient temperatures, is complex and very heterogeneous. The main mechanisms underlying the pathogenesis of CV disease at extreme temperatures involve several regulatory pathways, including temperature-sympathetic reactivity, the cold-activated renin-angiotensin system, dehydration, extreme temperature-induced electrolyte imbalances, and heat stroke-induced systemic inflammatory responses. The interplay of these mechanisms may vary based on individual factors, environmental conditions, and an overall health background. The net outcome is a significant increase in CV mortality and a higher incidence of hypertension, type II diabetes mellitus, acute myocardial infarction (AMI), heart failure, and cardiac arrhythmias. Patients with pre-existing CV disorders may be more vulnerable to the effects of global warming and extreme temperatures. There is an urgent need for a comprehensive intervention that spans from the individual level to a systemic or global approach to effectively address this existential problem. Future programs aimed at reducing CV and environmental burdens should require cross-disciplinary collaboration involving physicians, researchers, public health workers, political scientists, legislators, and national leaders to mitigate the effects of climate change.