Calix[n]arenes have attracted great attention due to their biocompatibility and superior stability. When the necessary functional groups are attached to these compounds, they may have the potential to target tumor tissues. Benzimidazoles were among the anticancer drugs discovered in recent years. The aim of this study was to design and synthesise a series of calix[4]arenes-benzimidazole. For comparison purposes, a benzimidazole derivative was synthesized by attaching it to the diester. Present the anticancer effects of these compounds by performing cell proliferation, apoptosis and cell imaging studies in cancer cell lines. Some of the obtained compounds were synthesized by methods in literature studies, and the rest were synthesized by modifying previous methods. As a result, a total of 3 new fluorescent calix[4]arene-benzimidazole derivatives were synthesized. MTT was used for cell proliferation, and Annexin V was used for apoptosis studies. For Confocal imaging studies, cells were treated with DAPI and MitoTracker dyes. Four designed calix[4]arene-benzimidazole were successfully synthesized and structurally confirmed by NMR, and IR spectroscopy. Anticancer study of four synthesized substances was performed. Bio-imaging studies were performed using Confocal Microscopy for these three successfully synthesized fluorescent compounds. CB5-a and CB5-b were found to be the most effective against HT-29 cells and CB5-c against HELA cells in the MTT test. Apoptosis analyses also proved that these compounds inhibited the proliferation of cancer cells. As a comparison substance, the synthesized CB5-R proven to be less cytotoxic than the fluorescent compounds by the MTT method, and we can say that the cationic compound bound to the calix[4]arene is more effective than the molecule bound to the diester.
Read full abstract