Aiming to solve the problem of tracking drift during movement, which was caused by the lack of discriminability of the feature information and the failure of a fixed template to adapt to the change of object appearance, the paper proposes an object tracking algorithm combining attention mechanism and correlation filter theory based on the framework of full convolutional Siamese neural networks. Firstly, the apparent information is processed by using the attention mechanism thought, where the object and search area features are optimized according to the spatial attention and channel attention module. At the same time, the cross-attention module is introduced to process the template branch and search area branch, respectively, which makes full use of the diversified context information of the search area. Then, the background perception correlation filter model with scale adaptation and learning rate adjustment is adopted into the model construction, using as a layer in the network model to realize the object template update. Finally, the optimal object location is determined according to the confidence map with similarity calculation. Experimental results show that the designed method in the paper can promote the object tracking performance under various challenging environments effectively; the success rate increases by 16.2%, and the accuracy rate increases by 16%.
Read full abstract