Abstract

Background and purposeThe delineation of the gross tumor volume (GTV) is a critical step for radiation therapy treatment planning. The delineation procedure is typically performed manually which exposes two major issues: cost and reproducibility. Delineation is a time-consuming process that is subject to inter- and intra-observer variability. While methods have been proposed to predict GTV contours, typical approaches ignore variability and therefore fail to utilize the valuable confidence information offered by multiple contours. Materials and methodsIn this work we propose an automatic GTV contouring method for soft-tissue sarcomas from X-ray computed tomography (CT) images, using deep learning by integrating inter- and intra-observer variability in the learned model. Sixty-eight patients with soft tissue and bone sarcomas were considered in this evaluation, all underwent pre-operative CT imaging used to perform GTV delineation. Four radiation oncologists and radiologists performed three contouring trials each for all patients. We quantify variability by defining confidence levels based on the frequency of inclusion of a given voxel into the GTV and use a deep convolutional neural network to learn GTV confidence maps. ResultsResults were compared to confidence maps from the four readers as well as ground-truth consensus contours established jointly by all readers. The resulting continuous Dice score between predicted and true confidence maps was 87% and the Hausdorff distance was 14 mm. ConclusionResults demonstrate the ability of the proposed method to predict accurate contours while utilizing variability and as such it can be used to improve clinical workflow.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.