The ionic conductivity of Na,Zr and Na,Sn silicates of the lovozerite family (Na8 − x H x ZrSi6O18 structural type, space group R \( \bar 3 \) m) was studied in the temperature range of 293–800 K using the impedance spectroscopy method (5−5 × 105 Hz). The compositions of the studied compounds were obtained using the method of hydrothermal synthesis in the MO2-SiO2-NaOH-H2O and MO2-SiO2-CaO-NaOH-H2O (M = Zr, Sn) systems at 573–823 K. The samples for electrophysical studies were prepared according to the ceramic technology. It was found that isovalent cation substitutions of Sn4+ → Zr4+ in Na8M4+Si6O18 and Na6CaM4+Si6O18 and H+ → Na+ in Na8 − x H x ZrSi6O18 result in an increase in the ionic conductivity by 2–3 orders of magnitude, without affecting the ionic transport activation energy (0.6–0.7 eV). The best electrolytic characteristics are typical for the Na5H3ZrSi6O18 compound, for which the ionic conductivity value is 5 × 10−4 S/cm at 573 K.