Abstract
Unitary conductances of native Na+ channel isoforms (gamma Na) have been determined under a variety of conditions, making comparisons of gamma Na difficult. To allow direct comparison, we measured gamma Na in cell-attached patches on NB2a neuroblastoma cells and rabbit ventricular myocytes under identical conditions [pipette solution (in mM): 280 Na+ and 2 Ca2+, pH 7.4; 10 degrees C]. gamma Na of NB2a channels, 22.9 +/- 0.9 pS, was 21% greater than that of cardiac channels, 18.9 +/- 0.9 pS. In contrast, respective extrapolated reversal potentials, +62.4 +/- 4.6 and +57.9 +/- 5.1 mV, were not significantly different. Several kinetic differences between the channel types were also noted. Negative to -20 mV, mean open time (MOT) of the NB2a isoform was significantly less than that of cardiac channels, and, near threshold, latency to channel opening decayed more rapidly in NB2a. On the basis of analysis of MOT between -60 and 0 mV, the rate constants at 0 mV for the open-to-closed (O-->C) and open-to-inactivated (O-->I) transitions were 0.42 +/- 0.11 and 0.47 +/- 0.11 ms-1 in NB2a and 0.10 +/- 0.06 and 1.19 +/- 0.07 ms-1 in myocytes. The slope factors were -38.9 +/- 8.7 and +10.7 +/- 6.1 mV in NB2a and -27.3 +/- 7.1 and +23.7 +/- 4.9 mV in myocytes. Transition rate constants were significantly different in NB2a and cardiac cells, but voltage dependence was not.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.