When placed in an unfamiliar and brightly lit open-field, two adult male rats that have not previously interacted display a low level of social interaction (SI) attributed to an anxiety-like state. The SI test has therefore been used to explore anxiolytic/antistress activity. Here, we investigated the effects of serotonin 5-HT1A receptor agonists displaying various activity profiles, i.e. partial vs full agonist efficacy and pre- versus postsynaptic 5-HT1A receptor preferential activation by "biased agonists". Adult male Sprague-Dawley rats were housed singly before starting the social interaction session. At 30 min before being placed in an open-field, both rats of the dyad were injected (i.p or s.c.) with either vehicle, diazepam (as a reference compound), or one of six 5-HT1A receptor agonists: NLX-101 (a.k.a. F15599), F13714, S15535, flesinoxan, 8-OH-DPAT, and buspirone. Time spent in SI (following, sniffing, playing) was recorded for 10 min. Time spent in SI was inversely correlated with light intensity, with values dropping nearly by half (212.6 ± 18.8 vs 113.7 ± 7.0 s) between 10 and 300 lx (measured at floor level). Under the high light intensity conditions (300 lx), diazepam showed a bell-shaped curve, significantly increasing SI (78% increase in interaction time above control) at 1 mg/kg i.p. only. In the case of 5-HT1A receptor ligands, full agonists, whether nonpreferential (flesinoxan, (±)8-OH-DPAT) or preferential for presynaptic receptors (F13714), showed the strongest activity in this model. The preferential presynaptic receptor partial agonist, S15535, was also active over a wide dose-range, although with lower efficacy than F13714. In contrast, NLX-101, a high-efficacy biased agonist that preferentially activates postsynaptic 5-HT1A receptors, exhibited little activity. The clinical anxiolytic, buspirone, showed a marked effect likely due to its partial agonist activity at 5-HT1A presynaptic receptors. These data support the hypothesis that enhancement of SI in this model is mediated by preferential agonist activation of presynaptic 5-HT1A receptors, and confirm previous studies using local microinjections of (±)8-OH-DPAT. They further support the utility of noninvasive administration of biased agonists for exploring the activity of 5-HT1A receptor subpopulations.
Read full abstract