For almost 75 years, classical eyeblink conditioning has been an invaluable tool for assessing associative learning processes across many species, thanks to its high translatability and well-defined neural circuitry. Our laboratory has adapted the paradigm to extensively detail associative changes in the rabbit reflexive eyeblink response (unconditioned response, UR), characterized by postconditioning increases in the frequency, size, and latency of the UR when the periorbital shock unconditioned stimulus (US) is presented alone, termed conditioning-specific reflex modification (CRM). Because the shape and timing of CRM closely resembles the conditioned eyeblink response (CR) to the tone conditioned stimulus (CS), we previously tested whether CRs and CRM share a common neural substrate, the interpositus nucleus of the cerebellum (IP), and found that IP inactivation during conditioning blocked the development of both CRs and the timing aspect of CRM. The goal of the current study was to examine whether extinction of CRs and CRM timing, accomplished simultaneously with unpaired CS/US extinction, also involves the IP. Results showed that muscimol inactivation of the IP during extinction blocked CR expression but not extinction of CRs or CRM timing, contrasting with the literature showing IP inactivation prevents CR extinction during CS-alone presentations. The continued presence of the US throughout the unpaired extinction procedure may have been sufficient to overcome IP blockade, promoting plasticity in the cerebellar cortex and/or extracerebellar components of the eyeblink conditioning pathway that can modulate extinction of CRs and CRM timing. Results therefore add support to the distributed plasticity view of cerebellar learning. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
Read full abstract