Abstract
We have previously characterized a model of posttraumatic stress disorder (PTSD), based on classical conditioning of the rabbit nictitating membrane response (NMR), that focuses on 2 key PTSD-like features: conditioned responses to trauma-associated cues and hyperarousal. In addition to the development of conditioned NMRs (CRs) to a tone conditioned stimulus (CS) associated with a periorbital shock unconditioned stimulus (US), we have observed that rabbits also exhibit a conditioning-specific reflex modification (CRM) of the NMR that manifests as an exaggerated and more complex reflexive NMR to presentations of the US by itself, particularly to intensities that elicited little response prior to conditioning. Previous work has demonstrated that unpaired presentations of the CS and US are successful at extinguishing CRs and CRM simultaneously, even when a significantly weakened version of the US is utilized. In the current study, additional extinction treatments were tested, including continued pairings of the CS with a weakened US and exposure to the training context alone, and these treatments were contrasted with the effects of unpaired extinction with a weakened US and remaining in home cages with no further treatment. Results showed that continued pairings only slightly decreased CRs and CRM, while context exposure had no effect on CRs and marginal effects on reducing CRM. Unpaired extinction was still the most effective treatment for reducing both. Findings are discussed in terms of applications to cognitive-behavioral therapies for treatment of PTSD, such as incorporating mild, innately stressful stimuli into virtual reality therapy.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.