An advantage of solar-powered houses is the concurrent generation and consumption of power. However, the simultaneous power consumption of a solar-powered house tends to be lower than its actual load consumption. We aim to design a multi-agent system for exchanging the power value information within a solar-powered house and neighborhood in order to maximize simultaneous solar-derived power usage. This study purposes a priority order to determine the simultaneous solar-derived power usage procedure. Using the measurement data of a next-generation solar-powered house on a sunny day, we evaluate the estimation result of the domestic power balance and analyze the time series of each of the power variabilities. From the result, the three types of power usage are classified, and the four phases of the power capacity allocation are defined. We clarify the specific calculation procedure and indicate the availability of simultaneous solar-derived power usage by finding the optimum combination of the power capacity and the usage volume per hour. Finally, we estimate that the total value of available simultaneous solar-derived power usage is approximately 80% of the capacity in the solar-powered house and four hypothetical neighborhood houses, contributing to a drastic reduction in surplus power.
Read full abstract