This study, third in the series, following from ground limestone and Class F fly ash, evaluates, as a cement constituent, the effect of using ground granulated blast furnace slag (GGBS) on the strength development of concrete, and consequently its embodied carbon dioxide (CO2e). The paper has been built from systematically analysing, evaluating and modelling the extensive data-matrix developed, having 85,099 data points, from the information sourced from 663 studies published in English, during 1974 to 2020, by 1,672 authors, working in 718 institutions in 49 countries, globally. It is shown that, at a given water/cement ratio, in comparison to Portland cement (PC), the use of GGBS results in a reduction in 28-day concrete strength, which increases with GGBS content, at a rate determined by the strength of concrete, GGBS fineness, and curing of concrete. It is also shown that, as to achieve a 28-day design strength, a lower water/cement ratio is required with a PC/GGBS blended cement than PC, this will reduce the actual CO2e savings that can be realised with the use of GGBS as cement constituent in manufacturing concrete. Finally, it is shown that GGBS is more effective in lowering CO2e of concrete than FA and GLS.
Read full abstract