The significance of critical infrastructure systems in maintaining productivity is undeniable. However, such systems remain susceptible to external disturbances and cascading failures. Instead of operating independently, these physical systems, such as transportation and stormwater systems, form an interdependent system. This interdependence, particularly important during flooding, illustrates that the failure of a stormwater system can disrupt traffic networks. To explore the extent of such interdependency, this study investigates the transportation and stormwater networks in Norman, Oklahoma. Using network science theories and concepts of multilayered networks, this paper analyzes these systems, both individually and in combination. The study identifies closely located components in the road and stormwater networks using Moran's I spatial autocorrelation metric. Next, the connectivity of these networks is represented in a graph format to investigate the topological credentials (i.e., rank of relative importance) of the network components (i.e., water inlets, road intersections as nodes, and stormwater conduits, road segments as links). Moreover, such credentials further change by considering the weights of the network components (i.e., average daily traffic, water flow). The proximity-based connectivity considerations between these networks utilizing Moran's I significance score revealed a good indicator of spatial interdependency. When incorporating directionality, the multilayer network analysis highlights that highly central components tend to cluster spatially, unlike the undirected counterpart. The study also identifies vulnerable locations and network components in a combined network setting that differ from the networks in isolation. In doing so, the research reveals new insights governing the complex reliance of transportation systems on neighboring stormwater systems.