The magnitude of physiological responses to a stressor can vary among individual goats within a herd; however, whether these differences can differentially affect meat quality is not known. This study was conducted to determine the influence of the magnitude of epinephrine response (ER) to acute stress on muscle metabolome and meat quality in goats. Male Spanish goats (6 mo old) were transported for 180min. (N = 75 goats; 25 goats/d) to impose stress. Blood samples were obtained after transport for analysis of physiological responses. Goats were slaughtered using humane procedures and samples were collected for muscle metabolomics and meat quality analyses. The data obtained from blood and muscle/meat analysis were then categorized based on epinephrine concentrations into low (LE), medium (ME), and high (HE) ER groups (n = 12/ER group). The physiological and meat quality variables were analyzed as a Completely Randomized Design in SAS, and metabolomics data were analyzed using R software. Plasma glucose concentrations were significantly high in the HE group, low in the LE group, and intermediate in the ME group (P < 0.05). However, leukocyte counts and cortisol, norepinephrine, blood urea nitrogen, and creatine concentrations were not different among the ER groups. Muscle (Longissimus dorsi) glycogen concentrations (15min postmortem) were significantly higher (P < 0.05) in the ME and LE groups than in the HE group. However, postmortem Longissimus muscle pH and temperature (15min and 24h), 24h calpastatin and desmin levels, and rib chop color (L*, a*, and b*), cooking loss, and Warner-Bratzler shear force values were unaffected by ER. Targeted metabolomics analysis of Longissimus muscle (15min) revealed that diacyl phosphatidylcholines (C38:0; 40:6) and sphingomyelin (C20:2) were significantly different (P < 0.05) among the ER groups, with the concentrations of these metabolites being consistently high in the LE group. These differential muscle metabolite concentrations suggest that ER can influence biochemical pathways associated with cell membrane integrity and signaling. ER had a significant effect on dopamine concentrations, with the levels increasing with increasing levels of ER. The results indicate that differences in epinephrine reactivity can influence selected physiological responses and muscle metabolites; however, it does not significantly influence meat quality attributes.
Read full abstract