Chlorophyll (Chl) is essential for plants to carry out photosynthesis, growth and development processes. Growth-regulating factors (GRFs) play a vital role in regulating Chl degradation in plants. However, the molecular mechanism by which GRF5 regulates Chl degradation in poplar remains unknown. Here we found that overexpression of PpnGRF5-1 increased Chl content in leaves and promoted chloroplast development in poplar. Overexpression of PpnGRF5-1 in poplar delayed Chl degradation induced by external factors, such as hormones, darkness and salt stress. PpnGRF5-1 responded to brassinosteroid (BR) signalling during BR-induced Chl degradation and reduced the expression levels of Chl degradation and senescence-related genes. PpnGRF5-1 inhibited the expression of Chl b reductases PagNYC1 and PagNOL. PpnGRF5-1 could interact with PagBZR1 in the nucleus. PagBZR1 also inhibited the expression of PagNYC1. In addition, we found that the protein-protein interaction between PagBZR1 and PpnGRF5-1 enhanced the inhibitory effect of PpnGRF5-1 on the Chl b reductases PagNYC1 and PagNOL. BZR1 and GRF5-1 were upregulated, and NOL and NYC1 were downregulated in triploid poplars compared to diploids. This study revealed a new mechanism by which PpnGRF5-1 regulates Chl degradation in poplars and lays the foundation for comprehensively analysing the molecular mechanism of Chl metabolism in triploid poplars.
Read full abstract