The aim of the study was to verify if there is any association between exposure to Cu, Zn, Cd, Pb, As and the formation of malondialdehyde (MDA), 8-hydroxydeoxyguanosine (8-OHdG), advanced oxidation protein products (AOPP), and whether in this process cigarette smoking plays a role. The investigations were performed in the 352 smelters occupationally exposed to heavy metals and 73 persons of control group. Metals concentration was determined by atomic absorption spectrometry. MDA and AOPP concentrations were determined by spectrophotometric methods. The concentration of 8-OHdG was determined by ELISA method. It was demonstrated an increased Cu concentration in smoking smelters compared to non-smoking control group. It was noted no differences in Zn and Mg concentrations between the examined groups. Pb concentration was more than sixfold higher in the group of smoking smelters and about fivefold higher in the group of non-smoking smelters compared to the control groups (smokers and non-smokers). It was shown that Cd concentration in the blood was nearly fivefold higher in the smoking control group compared to the non-smoking control group and more than threefold higher in the group of smoking smelters compared to non-smoking. It was shown an increased As concentration (more than fourfold) and decreased Ca concentration in both groups of smelters compared to control groups. In groups of smelters (smokers and non-smokers), twofold higher MDA and AOPP concentrations, and AOPP/albumin index compared to control groups (smokers and non-smokers) were shown. Tobacco smoke is the major source of Cd in the blood of smelters. Occupational exposure causes accumulation of Pb in the blood. Occupational exposure to heavy metals causes raise of MDA concentration and causes greater increase in AOPP concentration than tobacco smoke.