In this paper, we propose a low rank approximation method for efficiently solving stochastic partial differential equations. Specifically, our method utilizes a novel low rank approximation of the stiffness matrices, which can significantly reduce the computational load and storage requirements associated with matrix inversion without losing accuracy. To demonstrate the versatility and applicability of our method, we apply it to address two crucial uncertainty quantification problems: stochastic elliptic equations and optimal control problems governed by stochastic elliptic PDE constraints. Based on varying dimension reduction ratios, our algorithm exhibits the capability to yield a high-precision numerical solution for stochastic partial differential equations, or provides a rough representation of the exact solutions as a pre-processing phase. Meanwhile, our algorithm for solving stochastic optimal control problems allows a diverse range of gradient-based unconstrained optimization methods, rendering it particularly appealing for computationally intensive large-scale problems. Numerical experiments are conducted and the results provide strong validation of the feasibility and effectiveness of our algorithm.