Computational results of aircraft icing and predictions of ice shape are not only determined by the solutions of air-supercooled droplet two-phase flow and icing thermodynamic models of surface water film, but are also influenced by the growth mode of the ice layer. Two ice growth modes were established in a two-dimensional (2D) icing process simulation framework to calculate the ice thickness and ice shape, depending on whether surface deformation of the icing process was considered. Ice accretion simulations were performed with the two ice growth modes for an NACA0012 airfoil under rime ice and mixed ice conditions, and the results of ice amount, ice thickness, and ice shape were compared and analyzed. Under the same amount of ice formation, the ice thickness and ice shape obtained using different ice growth modes vary. The ice thickness and the ice shape size are relatively large without considering surface deformation, whereas the results with growth correction show a certain degree of reduction, which is more noticeable around the leading edge and the ice horns. However, the degrees of difference in ice thickness and ice shape are not the same, and the deviation in ice thickness is more obvious. Furthermore, the ice thickness and ice shape obtained using the ice growth correction mode are more consistent with experimental data and commercial software results, verifying the accuracy of the ice simulation method and the necessity of considering ice surface deformation. This paper is an essential guide for understanding the icing mechanism and accurately predicting two-dimensional ice shape.
Read full abstract