Snapshot compressive hyperspectral imaging necessitates the reconstruction of a complete hyperspectral image from its compressive snapshot measurement, presenting a challenging inverse problem. This paper proposes an enhanced deep unrolling neural network, called EDUNet, to tackle this problem. The EDUNet is constructed via the deep unrolling of a proximal gradient descent algorithm and introduces two innovative modules for gradient-driven update and proximal mapping reflectivity. The gradient-driven update module leverages a memory-assistant descent approach inspired by momentum-based acceleration techniques, for enhancing the unrolled reconstruction process and improving convergence. The proximal mapping is modeled by a sub-network with a cross-stage spectral self-attention, which effectively exploits the inherent self-similarities present in hyperspectral images along the spectral axis. It also enhances feature flow throughout the network, contributing to reconstruction performance gain. Furthermore, we introduce a spectral geometry consistency loss, encouraging EDUNet to prioritize the geometric layouts of spectral curves, leading to a more precise capture of spectral information in hyperspectral images. Experiments are conducted using three benchmark datasets including KAIST, ICVL, and Harvard, along with some real data, comprising a total of 73 samples. The experimental results demonstrate that EDUNet outperforms 15 competing models across four metrics including PSNR, SSIM, SAM, and ERGAS.
Read full abstract