Ethnopharmacological relevanceAnxiety disorders leads to a decline in quality of life and increased risk of morbidity and mortality. The Baihe Dihuang decoction (BDD) is a classic Chinese medical formula that has been widely used to treat anxiety disorders for thousands of years in China. However, the pharmacodynamic material that is responsible for the antianxiety of BDD remains unclear. Aim of the studyTo screen the main ingredients of anti-anxiety in BDD based on the establishment of spectrum-effect relationship and verified experiment. MethodsThe UPLC-Q-TOF/MS technique was utilized to establish fingerprints of various fractions of BDD and identify the main compounds. The anti-anxiety effects of BDD were comprehensively evaluated through multiple assessments, including the open field test, elevated plus maze test, and neurotransmitters tests. Then, the spectrum-effect relationship was established through Pearson correlation analysis, gray correlation analysis, orthogonal partial least squares regression analysis. The spectrum-effect relationship results were confirmed through various measures on an anxiety condition cell model, induced by a corticosterone and lipopolysaccharide intervention. These measures included assessing neuronal cell viability, morphology, apoptosis, synaptic damage, and the expression of neurotransmitters and inflammatory factors. ResultsIn the UPLC-Q-TOF-MS fingerprint, 46 common peaks were identified. The pharmacological results indicated that different fractions of BDD have strong effects on improving anxiety-like behavior and regulating neurotransmitters. Among them, butanol fraction has the highest comprehensive evaluation score of anti-anxiety efficacy, which is main active fraction of BDD for anti-anxiety. The analysis of the spectrum-effect relationship revealed that the 46 peaks exhibited varying degrees of correlation with the anti-anxiety efficacy indicators of BDD. Among them, 14 components have a high correlation with the anti-anxiety efficacy indicators, which may be the potential anti-anxiety efficacy components of BDD. The in vitro activity verification of active components verified our prediction, regaloside A, B, C, D, H, acteoside, and isoacteoside improved neuronal cell viability, cell morphology, apoptosis, and synaptic damage. Additionally, regaloside A, B, C, D, H and acteoside regulated the neurotransmitter levels, while regaloside A, B, C, D, acteoside and isoacteoside inhibited the levels of inflammatory cytokines. ConclusionThe butanol fraction was found to be the main active fraction of BDD, and 14 compounds were the major anxiolytic active components. The results of verifying the major active components were consistent with the predicted results of the spectrum-effect analysis. The developed spectrum-effect analysis in this study demonstrates high accuracy and reliability for screening active components in TCMs.