α-L-Rhamnosidase [EC 3.2.1.40], enzyme of the hydrolase family has a wide range of applications: in the food industry, for example, in winemaking to improve the quality and aroma of wines, in the production of citrus juices and drinks to remove bitter components (naringin) that improves the quality and nutritional value of these products; in research as an analytical tool for studying the structure of complex carbohydrate-substituted biopolymers. For the successful use of α-L-rhamnosidases in various biotechnological processes, an important aspect is the development of ways to increase their activity. The main factors affecting the growth and metabolism of microorganisms, including the synthesis of enzymes, are the physicochemical conditions of cultivation, the composition of the nutrient medium, the introduction of substances that raise the yield of the enzyme, which is manifested in an increase in its activity. At present, one of the priority directions of modern research is the study of the effect of various effector compounds that are capable to modify the studied enzymatic activity. In this work, which is a continuation of previous studies, a number of mixed-ligand and mixed-ligand-different-metal coordination germanium compounds of with xylaric acid (H5Xylar), 1,10-phenanthroline (Phen), 2,2-bipyridine (bipy) and ions of 3d-metals (Fe2+, Ni2+, Cu2+, Zn2+) were selected as effectors. Study of the effect of these complexes on the activity of Eupenicillium erubescens, Cryptococcus аlbidus and Penicillium tardum α-L-rhamnosidases were the aim of this work. Methods. The objects of research were α-Lrhamnosidases from Eupenicillium erubescens 248, Cryptococcus albidus 1001, and Penicillium tardum IMV F-100074. The α-L-rhamnosidase activity was determined by the Davis method using naringin as a substrate. We used 12 coordination compounds of germanium as modifiers of enzyme activity, the composition and structure of which were established using a combination of physical and chemical research methods: elemental analysis, thermogravimetry, IR spectroscopy and X-ray structural analysis. Structures of seven compounds are deposited in the Cambridge Crystallographic Database. When studying the effect of various compounds on the activity of enzymes, concentrations of 0.1 and 0.01% were used, exposure times were 0.5 and 24 hours. The test compounds were dissolved in 0.1% dimethyl sulfoxide. UV-spectra of absorption of native and chemical modified preparations of the enzymes were studied by spectrophotometer-fluorimeter DeNovix DS-11 in the range of 220–340 nm, concentration of the enzyme preparation 1.0 mg of protein/mL. Results. Analysis of the totality of the obtained data (exposure time 24 h, concentration 0.1%) regarding the effect of the studied compounds on the activity of E. erubescens, C. albidus and P. tardum α-L-rhamnosidases showed that the influence of the studied modifiers for the activity of α-L-rhamnosidases varies depending on the producer strain. Our data allow us to present the following series of modifiers in accordance with an increase in their effect on the activity of enzymes of different producers: E. еrubescens: 12 < 11 < 5 < 3 < 4=10 < 1 < 3 < 8 < 2 < 6 < 7; C. albidus: 10 < 11 < 12 < 9 < 3 < 1=5 < 8=4 < 2 < 6 < 7; P. tardum: 12=2 < 3 < 4 < 11 < 5 < 8 < 1 < 9 < 6 < 10 < 7. Conclusions. The results obtained allow us to conclude that compound (7)(-tris(bipyridine) nickel(II) μ-dihydroxyxylaratogermanate(IV)) is the most effective activator of α-L-rhamnosidases of all three micromycete strains, compound (6)(tris(phenanthroline)nickel(II) μ-dihydroxyxylaratogermanate(IV)) − on α-L-rhamnosidase from E. erubescens and C. albidus, while compound (10)-(copper(II) μ-dihydroxyxylaratogermanate(IV)-cuprate(II)) − only of P. tardum α-L-rhamnosidase.
Read full abstract