Abstract

Boryltin compounds featuring the metal in the+1 or 0 oxidation states can be synthesized from the carbene-stabilized tin(II) bromide (boryl)Sn(NHC)Br (boryl={B(NDippCH)2 }; NHC=C{(Ni PrCMe)2 }) by the use of strong reducing agents. The formation of the mono-carbene stabilized distannyne and donor-free distannide systems (boryl)SnSn(IPrMe)(boryl) (2) and K2 [Sn2 (boryl)2 ] (3), using Mg(I) and K reducing agents mirrors related germanium chemistry. In contrast to their lighter congeners, however, systems of the type [Sn(boryl)]n are unstable with respect to disproportionation. Carbene abstraction from 2 using BPh3 , and two-electron oxidation of 3 both result in the formation of a 2 : 1 mixture of the Sn(II) compound Sn(boryl)2 , and the hexatin cluster, Sn6 (boryl)4 (4). A viable mechanism for this rearrangement is shown by quantum chemical studies to involve a vinylidene intermediate (analogous to the isolable germanium compound, (boryl)2 Ge=Ge), which undergoes facile atom transfer to generate Sn(boryl)2 and trinuclear [Sn3 (boryl)2 ]. The latter then dimerizes to give the observed hexametallic product 4, with independent studies showing that similar trigermanium species aggregate in analogous fashion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.