LSD1 has become an appealing target for the development of new pharmacologic agents to treat cardiovascular diseases, including heart failure. Herein, we reported the design, synthesis, and structure-activity relationship of a series of TCP-based derivatives targeting LSD1. Docking studies were employed to successfully elucidate the SAR. Particularly, compound 7d, characterized by low toxicity, demonstrated a high affinity for LSD1 at molecular and cellular levels. It also displayed favorable pharmacokinetic properties for oral dosing (e.g., F = 77.61%), effectively alleviating Ang II-induced NRCFs activation in vitro and reducing pathological myocardial remodeling in TAC-induced cardiac remodeling and heart failure in vivo. Additionally, mechanism studies revealed that suppression of myocardial dysfunction by compound 7d is related to LSD1 inhibition-induced TGFβ signaling pathway repressing. In summary, the current report presents compound 7d as a potent LSD1 inhibitor with the potential for further development as a therapeutic agent for pressure overload-related heart failure.
Read full abstract