It is unclear why the Pb, Nd, and Sr isotopic composition of the modern mid-ocean ridge basalts (MORB) from the Indian Ocean is different from that of the North Atlantic and Pacific Oceans. A possible explanation for this is that the Indian MORB-type isotopic signature is a long-lived regional feature of the mantle, as evidently shown by the isotopic composition of the ∼350 Ma MORB-like Mian-Lue northern ophiolite, which was formed in the same region presently occupied by the Indian Ocean. However, this hypothesis is in conflict with the lack of Indian MORB-type isotopic signature in a number of ∼150 Ma Tethyan and Indian Ocean crusts. To further constrain the origin of the Indian MORB-type isotopic signature, we analyze the geochemical and Pb, Nd, and Sr isotopic composition of representative mafic rocks from four Tethyan ophiolites ranging in age from 90 to 360 Ma. The Sr isotopic composition of the samples is unreliable due to alteration, but the age-corrected Nd and Pb isotopic ratios and geochemical data indicate that these Tethyan rocks were derived from a geochemically depleted asthenospheric source that had a clear Indian MORB-type isotopic signature. We therefore conclude that the bulk of the Indian suboceanic mantle was most probably inherited from the Tethyan asthenosphere. A few regions in both the Tethyan and Indian Oceans, however, are most probably underlain by Pacific and North Atlantic MORB-type mantle (and vice-versa) because of the flow of the asthenosphere in response to tectonic plate reorganizations that lead to openings and closures of ocean basins. The Indian MORB-type isotopic signature of the western Pacific marginal basin crusts could be due to either flow of the Indian Ocean mantle into the western Pacific or to endogenous production of such an isotopic signature from delaminated East-Asian sublithospheric materials during closure of the Tethys Ocean.