Abstract

We report, for the first time, ultrasonic velocity values for a pure (>95%), natural, submarine basalt glass of mid-ocean ridge basalt composition, from 10 to 1000 MPa at room temperature. These new data show that basalt glass, abundant in the upper oceanic crust, has the lowest velocity of any primary solid component of the oceanic crust. In addition, natural basalt glass has a steeper pressure-dependence of velocity than previously measured in more crystalline samples, indicating that cracks in natural basalt glass are weaker than in more crystalline rocks. To obtain values for the pure glass phase, we correct the natural glass data for the low-pressure closure of cracks, and the presence of minor mineralogic components and vesicles. These new data provide a baseline for evaluating the effect of abundant basalt glass and glassy mesostasis in oceanic upper crust on in situ seismic velocities. In addition, data on the elastic and seismic properties of natural glasses are useful for a better understanding of glass structure, and glass relaxation, with potential applications to submarine volcanology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call