Background: During the last decade, there has been an increased demand for non-metallic materials in orthodontics due to allergies, compatibility with medical imaging devices such as MRI, and aesthetic reasons. Monolithic poly-ether-ether-ketone material could address medical issues such as allergies and MRI compatibility. Moreover, nickel-titanium (NiTi) archwires covered in PEEK, either by a tube or electrophoretic deposition, could address esthetic concerns. This scoping review aims to summarize the available evidence in the literature to provide an overview of the applications and material properties of PEEK in orthodontics. Methods: This scoping review was conducted according to the Joanna Briggs Institute Manual for Evidence Synthesis for scoping reviews and the Preferred Reporting Items for Systematic Review and Meta-Analyses Protocols extension for Scoping Reviews (PRISMA-ScR). We searched for relevant publications in MEDLINE (via PubMed), Embase, Web of Science, Cochrane Library, CENTRAL, ProQuest, and SCOPUS. A gray literature search was conducted on Google Scholar. Results: Six studies were included. In three studies, the authors investigated the feasibility of developing a composite PEEK-NiTi wire, while in two other studies, the authors investigated the feasibility of monolithic PEEK wires. In the final study, the authors investigated the feasibility of PEEK as a bonded retainer. Conclusions: The included studies show promising results in developing monolithic and composite (PEEK-NiTi) materials. Further research on the robustness of PEEK composites in the oral cavity, the status of cytotoxicity and roughness values, and the (bio)-mechanical behavior of the composites is needed. A homogenously set up comparative study of clinically relevant, evenly sized, monolithic PEEK wires versus conventional orthodontic wires for their biomechanical, mechanical, and material properties would clarify the possibilities of developing monolithic PEEK wires. Missing data in the retainer study suggest more research on the mechanical properties and points of failure of PEEK-bonded retainers, and a comparative study comparing the failure and mechanical properties of PEEK-bonded retainers to flat braided metallic bonded retainers is needed.