This study investigates the high-temperature wear behavior of laser-cladded (LC) cobalt-based Stellite 6 alloy coatings and compares the wear resistance of the cladding layer to the grey cast iron (GCI) substrate material at three different elevated temperatures: 150 °C, 250 °C, and 350 °C. Wear mechanisms at elevated temperatures were analyzed using SEM-EDS and Raman Spectroscopy to understand the material removal processes and degradation for the discs and counterpart composite friction material pins, respectively.The results indicated a significant improvement in wear resistance for cobalt-based alloy cladding at high temperatures. Wear rates were reduced by 5.0 %, 43.0 %, and 16.0 % at 150 °C, 250 °C, and 350 °C, respectively. The LC - brake pin tribo-pair exhibited a continuous increase in friction coefficients (CoF) with an increase in testing temperatures. The wear mechanism for laser-cladded discs exhibited a combination of abrasive and adhesive wear, with abrasive wear prevailing at 150 °C and increased adhesive wear at 250 °C and 350 °C. However, at 350 °C, decomposition of phenolic resin and the adhesive wear mechanism, led to brake pin failure. For GCI discs oxidative wear was identified as the predominant wear mechanism. The improved knowledge of wear mechanisms on LC Stellite 6 against composite brake pins, is set to enhance surface modification of GCI for brake disc applications.
Read full abstract