Objective. Resting-state EEG measures have shown potential in distinguishing individuals with PTSD from healthy controls. ERP components such as N2, P3, and late positive potential have been consistently linked to cognitive abnormalities in PTSD, especially in tasks involving emotional or trauma-related stimuli. However, meta-analyses have reported inconsistent findings. The understanding of biomarkers that can classify the varied symptoms of PTSD remains limited. This study aimed to develop a concise set of electrophysiological biomarkers, using neutral cognitive tasks, that could be applied across psychiatric conditions, and to identify biomarkers associated with the anxiety and depression dimensions of PTSD. Approach. Continuous simultaneous recordings of EEG and electrocardiogram (ECG) were obtained in veterans with PTSD (n = 29) and healthy controls (n = 62) during computerized tasks. EEG, ERP, and heart rate measures were evaluated in terms of their ability to discriminate between the groups or correlate with psychological measures. Results. The PTSD cohort exhibited faster alpha oscillations, reduced alpha power, and a flatter power spectrum. Furthermore, stronger reduction in alpha power was associated with higher trait anxiety, while a flatter slope was related to more severe depression symptoms in individuals with PTSD. In ERP tasks of visual memory and sustained attention, the PTSD cohort demonstrated delayed and exaggerated early components, along with attenuated LPP amplitudes. The three tasks revealed distinct and complementary EEG signatures PTSD. Significance. Multimodal individualized biomarkers based on EEG, cognitive ERPs, and ECG show promise as objective tools for assessing mood and anxiety disturbances within the PTSD spectrum.
Read full abstract