Abstract
The late positive potential (LPP) is an ERP component commonly used to study emotional processes and has been proposed as a neuroaffective biomarker for research and clinical uses. These applications, however, require standardized procedures for elicitation and ERP data processing.We evaluated the impact of different EEG preprocessing steps on the LPP's data quality and statistical power. Using a diverse sample of 158 adults, we implemented a multiverse analytical approach to compare preprocessing pipelines that progressively incorporated more steps: artifact detection and rejection, bad channel interpolation, and bad segment deletion. We assessed each pipeline's effectiveness by computing the standardized measurement error (SME) and conducting simulated experiments to estimate statistical power in detecting significant LPP differences between emotional and neutral images.Our findings highlighted that artifact rejection is crucial for enhancing data quality and statistical power. Voltage thresholds to reject trials contaminated by artifacts significantly affected SME and statistical power. Once artifact detection was optimized, further steps provided minor improvements in data quality and statistical power. Importantly, different preprocessing pipelines yielded similar outcomes.These results underscore the robustness of the LPP's affective modulation to preprocessing choices and the critical role of effective artifact management. By refining and standardizing preprocessing procedures, the LPP can become a reliable neuroaffective biomarker, supporting personalized clinical interventions for affective disorders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.