The aviation industry has continuously improved its fuel efficiency over the last decades with innovations in technology, design and operation. Further improvements are becoming more difficult as current technology reaches complete maturity. Electrification of road vehicles is predicted to completely replace combustion engines in vehicles. As the efficiency and reliability of electric batteries and motors improve, so does the case for electric propulsion systems in aircraft. Jet fuel carries significantly more energy per weight than current state of the technology batteries, making complete replacement of fuel challenging. Hybrid electric propulsion, where both fuel and batteries are used to power propulsion systems could be feasible and improve fuel efficiency. Hybrid electric powertrains use electric power to reduce the power demands from the combustion engine. Electric batteries are discharged and charged during the operation based on power requirements.This paper presents an aircraft design method that includes optimized power management in the design loop. Power management determines battery discharging and charging throughout the design mission to reduce overall fuel consumption. Power management optimization provides the necessary feedback on battery and fuel performance to design battery pack size. This method is applied to regional aircraft, which typically fly the shortest routes of a commercial airline fleet. These short routes have proportionally longer climb and descent segments. These characteristics of regional aircraft routes lead to wider variations in power during operation, where hybrid electric powertrains are the most beneficial.The proposed hybrid electric aircraft design method finds that a serial hybrid electric regional aircraft could achieve significant fuel efficiency improvements to current regional aircraft. This result is in contrast of the current literature, which requires significant improvements to battery energy density, power distribution efficiency and electric motor efficiency to achieve similar fuel performance results. The hybrid electric regional aircraft does not outperform a traditional turboprop aircraft designed with identical objectives. The turboprop aircraft design improves even greater fuel efficiency improvements over current regional turboprop aircraft. This suggests two pathways are possible; the propulsion system of the next generation of regional aircraft could still be non-electric and achieve improved fuel burn improvements considering current technology or serial hybrid-electric powertrains configurations could be adopted in an expanded time horizon if optimistic technology development is done on battery power density to match the possible improvements of the proposed turboprop aircraft.
Read full abstract