Optically pumped magnetometers (OPMs) functioning in the spin-exchange relaxation-free (SERF) regime have emerged as attractive options for measuring weak magnetic fields, owing to their portability and remarkable sensitivity. The operation of SERF-OPM critically relies on the ambient magnetic field; thus, a magnetic field compensation device is commonly employed to mitigate the ambient magnetic field to near zero. Nonetheless, the bias of the OPM may influence the compensation impact, a subject that remains unexamined. This paper introduced an innovative bias calibration technique for OPMs. The sensitivity of the OPM was altered by adjusting the cell temperature. The output of the OPM was then documented with varying sensitivity. It is assumed that the signal exhibits a linear correlation with the environmental magnetic field, and the statistical characteristics of the magnetic field are identical for both measurements, upon which the bias of the OPM is assessed. The bias was subsequently considered in the feedback magnetic field compensation mechanism. The results indicate that this technique might successfully reduce environmental magnetic fluctuations and enhance the sensitivity of the OPM. This technique measured the magnetic field produced by the human heart, confirming the viability of the ultra-weak biomagnetic field measurement approach.
Read full abstract