In the present paper, we establish the existence of two unique common fixed point theorems with a new contractive condition for four self-mappings in the S-metric space. First, we establish a common fixed-point theorem by using weaker conditions such as compatible mappings of type-(E) and subsequentially continuous mappings. Further, in the next theorem, we use another set of weaker conditions like sub-compatible and sub-sequentially continuous mappings, which are weaker than occasionally weak compatible mappings. Moreover, it is observed that the mappings in these two theorems are sub-sequentially continuous, but these mappings are neither continuous nor reciprocally continuous mappings. These two results will extend and generalize the existing results of [7] and [9] in the S-metric space. Furthermore, we also provide some suitable examples to justify our outcomes.
Read full abstract