Abstract In this article, we study the existence of solutions for the Dirac system { D u = ∂ H ∂ v ( x , u , v ) on M , D v = ∂ H ∂ u ( x , u , v ) on M , \left\{\begin{aligned} \displaystyle Du&\displaystyle=\frac{\partial H}{% \partial v}(x,u,v)\quad\text{on }M,\\ \displaystyle Dv&\displaystyle=\frac{\partial H}{\partial u}(x,u,v)\quad\text{% on }M,\end{aligned}\right. where M is an m-dimensional compact Riemannian spin manifold, u , v ∈ C ∞ ( M , Σ M ) {u,v\in C^{\infty}(M,\Sigma M)} are spinors, D is the Dirac operator on M, and the fiber preserving map H : Σ M ⊕ Σ M → ℝ {H:\Sigma M\oplus\Sigma M\rightarrow\mathbb{R}} is a real-valued superquadratic function of class C 1 {C^{1}} with subcritical growth rates. Two existence results of nontrivial solutions are obtained via Galerkin-type approximations and linking arguments.
Read full abstract