Abstract
For a Dirac operator $D_{\bar{g}}$ over a spin compact Riemannian manifold with boundary $(\bar{X},\bar{g})$ , we give a new construction of the Calderón projector on $\partial\bar{X}$ and of the associated Bergman projector on the space of L 2 harmonic spinors on $\bar{X}$ , and we analyze their Schwartz kernels. Our approach is based on the conformal covariance of $D_{\bar{g}}$ and the scattering theory for the Dirac operator associated with the complete conformal metric $g=\bar{g}/\rho^{2}$ where ρ is a smooth function on $\bar{X}$ which equals the distance to the boundary near $\partial\bar{X}$ . We show that $\frac{1}{2}(\operatorname{Id}+\tilde{S}(0))$ is the orthogonal Calderón projector, where $\tilde{S}(\lambda)$ is the holomorphic family in {ℜ(λ)≥0} of normalized scattering operators constructed in Guillarmou et al. (Adv. Math., 225(5):2464–2516, 2010), which are classical pseudo-differential of order 2λ. Finally, we construct natural conformally covariant odd powers of the Dirac operator on any compact spin manifold.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.