A compact solid state neutral particle analyzer (SSNPA) diagnostic, previously installed at NSTX-U, has been moved to MAST-U and successfully operated in the first physics campaign (MU01). The SSNPA operates by detecting the flux of fast neutral particles produced by charge exchange (CX) reactions to diagnose the fast ion distribution. The diagnostic consists of three 16-channel sensors, which provide a radial view of the plasma and have a sightline intersection with the South-South neutral beam line. From this radial geometry, active CX signals from mostly trapped particles are observed. Each channel has a spatial resolution of 3-4cm, a temporal resolution of 200kHz, and an average pitch angle resolution of a few degrees. The three-sensor configuration allows for coarse energy resolution of the CX signals; each sensor sees similar sightlines but different filter thicknesses alter the energy cutoffs by known amounts. Experimental data show that all channels are collecting data as intended. The signal to noise ratio is typically around 15. Preliminary data analysis shows a correlation between the SSNPA signal and magnetohydrodynamic activity in the plasma as expected.
Read full abstract