Abstract
The ion energy distribution in a magnetically confined plasma can be inferred from charge exchange neutral particles. On the Madison Symmetric Torus (MST), deuterium neutrals are measured by the Florida A&M University compact neutral particle analyzer (CNPA) and the advanced neutral particle analyzer (ANPA). The CNPA energy range covers the bulk deuterium ions to the beginning of the fast ion tail (0.34-5.2 keV) with high-energy resolution (25 channels) while the ANPA covers the vast majority of the fast ion tail distribution (∼10-45 keV) with low energy resolution (10 channels). Though the ANPA has provided insight into fast ion energization in MST plasma, more can be gained by increasing the energy resolution in that energy range. To utilize the energy resolution of the CNPA, fast ions can be retarded by an electric potential well, enabling their detection by the diagnostic. The ion energy distribution can be measured with arbitrary resolution by combining data from many similar MST discharges with different energy ranges on the CNPA, providing further insight into ion energization and fast ion dynamics on MST.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.