The fractional Schrödinger equation is an important fractional nonlinear evolution equation, and the study of its numerical solution has profound scientific meaning and wide application prospects. This paper proposes a new high-accuracy difference method for nonhomogeneous time-fractional Schrödinger equation (TFSE). The Caputo time-fractional derivative is discretized by high-order formula and the fourth-order compact difference approximation is applied for spatial discretization. A new nonlinear compact difference scheme with temporal second-order and spatial fourth-order accuracy is constructed, which is solved by the efficient linearized iterative algorithm. The unconditional stability and convergence are analysed by the energy method. The unique existence and maximum-norm estimate of new compact difference scheme solution are obtained. Theoretical analysis shows that the convergence accuracy of new compact difference scheme is with the strong regularity assumption. Numerical experiments verify theoretical results and indicate that the proposed method is an efficient numerical method for solving TFSE.