Abstract
This article presents a new approximation of order four in exponential form for two-dimensional (2D) quasilinear partial differential equation (PDE) of elliptic form with solution domain being irrational. It is further extended for application to a system of quasilinear elliptic PDEs with Dirichlet boundary conditions (DBCs). The main highlights of the method framed in this article are as under:•It uses a 9-point stencil with unequal mesh to approach the solution. The error analysis is discussed to authenticate the order of convergence of the proposed numerical approximation.•Various validating problems, for instance the Burgers’ equation, Poisson equation in cylindrical coordinates, Navier-Stokes (NS) equations in rectangular and cylindrical coordinates are solved using the proposed techniques to depict their stability. The proposed approximation produces solution free of oscillations for large values of Reynolds Number in the vicinity of a singularity.•The results of the proposed method are superior in comparison to the existing methods of [49] and [56].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.