Eutrophication is a global environmental problem in aquatic ecosystems, mainly caused by increased nutrient loads (nitrogen and phosphorus). Phytoplankton and periphyton responses to the nutrients increase and temporal variation may be related to mutual seeding and/or variable environmental constraints. Each of these communities may be useful for characterizing and monitoring eutrophication processes. However, little information exists about the simultaneous responses or interactions between such communities during eutrophication, even less in high-altitude tropical lakes such as Lake Titicaca. Here, we first established a eutrophication gradient with stable isotopes (δ15N and δ13C) and physicochemical variables in a shallow bay of Lake Titicaca. Later, we analyzed the shifts in taxonomic and morphological forms of phytoplankton and periphyton colonizing the underwater stems of totora (Schoenoplectus californicus ssp. tatora), an emergent aquatic macrophyte, along the eutrophication gradient. There is a clear turnover (groups, genera, and morphological forms) in phytoplankton and periphyton and decreased biodiversity along the eutrophication gradient. Gomphonema genus relative abundance increase with eutrophication in both communities, while Achnanthidium abundance decreases. However, other genera behave differently in each community, allowing for the identification of specific bioindicators of eutrophication for phytoplankton (Oscillatoria, Spirogyra, and Euglena) and periphyton (Oedogonium, Stigeoclonium, and Characium). They share genus composition with some taxa showing similar behaviors, thus interactions between phytoplankton and periphyton may exist. We also believe that each compartment can act as a seeding reservoir for the other, though remaining independent to some extent.
Read full abstract