Transmission, energy management, and distribution systems are critical components of modern electric vehicles, encompassing all sectors of the power system through communication control technology. One widely used communication system in electric vehicles is the Controller Area Network (CAN). This research aims to investigate the development of CAN BUS technology, adapted from large trucks, to control the communication system within an ATV electric vehicle using a communication format similar to bus Communication. The communication control system includes several components: the engine switch, headlight, turn signal, emergency light, horn, forward/reverse gear, and accelerator. The system’s communication protocols were developed using MRS Developers Studio version 1.40 software to create the data transmission and reception formats for the vehicle’s components. The communication system employs three PLC 1.033.30B.00 type E control boxes, each with limited analog and digital input/output ports. The sequence of communication control begins with the engine start/stop operation, as the system will not function unless the engine is started first. The headlight operation is processed within the CAN BUS1 control box. Simultaneously, the turn signal and emergency light functions are controlled by CAN BUS1 and displayed on both the CAN BUS2 (front of the vehicle) and CAN BUS3 (rear of the vehicle) control boxes. Additionally, the accelerator function is managed within the CAN BUS2 control box and displayed on the CAN BUS3 control box. However, this operation is contingent upon the forward/reverse gear selection, managed by CAN BUS1 and processed by CAN BUS3. All system operations are designed within the software’s programming paths. The communication system operates using CAN-High and CAN-Low lines, and communication data fields can be monitored using the PCAN-View software version 4.2.1.533. This study demonstrates the feasibility and effectiveness of adapting CAN BUS technology for ATV electric vehicles, providing insights into the integration and control of various vehicular components within a unified communication framework.
Read full abstract