With the development of intelligent technology, multi-agent systems have been widely applied in military and civilian fields. Compared to a single platform, multi-agent systems can complete more dangerous, difficult, and heavy tasks. However, due to the limited autonomy of unmanned platforms and the regulatory needs of personnel, multi-agent systems cooperating with manned platforms to perform tasks have been more widely promoted at this stage of development. This paper addresses a differential game method for cooperative decision-making of a multi-agent system cooperating with the manned platform for the target-pursuit problem. The manned platform pursues the target according to a certain trajectory, and its state can be obtained by the multi-agent system. Firstly, for the case that the target moves with a fixed trajectory, the target-pursuit problem in a manned–unmanned environment is viewed in the form of game based on a communication graph among agents. Secondly, strategies of all agents are proposed while maintaining their group cohesion. A set of coupled differential equations is solved to implement strategy calculation. Compared to purely unmanned systems, the strategies combine the advantages of the manned platform and add a reference item, which can achieve team cohesion relatively quickly. Furthermore, a brief analysis is made on the scenarios where the target is in another case or adopts other strategies. Finally, comparative simulations have verified the effectiveness and synergy of the strategy.