Abstract

This paper deals with state estimation for a class of Lipschitz nonlinear systems under a time-varying disconnected communication network. A distributed observer consists of some local observers that are connected to each other through a communication network. We consider a situation where a communication network does not remain connected all the time, and the network may be caused by intermittent communication link failure. Moreover, each local observer has access to a local measurement, which may be insufficient to ensure the system’s observability, but the collection of all measurements in the network ensures observability. In this condition, the purpose is to design a distributed observer where the estimated state vectors of all local observers converge to the state vector of the system asymptotically, while local observers exchange estimated state vectors through a communication network and use their local measurements. According to theoretical analysis, a nonlinear and a robust nonlinear distributed observer exist when in addition to the union of all communication topologies being strongly connected during a time interval, the component of each communication graph is also strongly connected during each subinterval. The existence conditions of the distributed observers are derived in terms of a set of linear matrix inequalities (LMIs). Finally, the effectiveness of the presented method is numerically verified using some simulation examples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call